Convex circuit-free coloration of an oriented graph
نویسندگان
چکیده
We introduce the convex circuit-free coloration and convex circuit-free chromatic number −→ χa( −→ G) of an oriented graph −→ G and establish various basic results. We show that the problem of deciding if an oriented graph verifies χa( −→ G ) ≤ k is NP-complete if k ≥ 3 and polynomial if k ≤ 2. We exhibit an algorithm which finds the optimal convex circuit-free coloration for tournaments, and characterize the tournaments that are vertex-critical for the convex circuit-free coloration.
منابع مشابه
The convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملNew skew equienergetic oriented graphs
Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...
متن کاملCircuit Admissible Triangulations of Oriented Matroids Jörg Rambau
All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...
متن کاملCircuit Admissible Triangulations of Oriented Matroids
All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009